Inverter circuit


An inverter is a circuit that converts DC voltage into AC voltage by means of transistors which switches on and off DC current supplied from a battery. DC is switched on and off so that, it can be stepped up by a transformer. When DC is applied to a transformer, no varying magnetic field is produced therefore, no current is induced in the secondary coil of the stepup transformer. 
Transformers, can't step up DC, that's why transistors are used to switch on and off DC rapidly to produce a varying magnetic field when applied to the primary coil of a transformer, which is then stepped up by the transformer depending on the primary to secondary coil winding.



Basic parts of an inverter.

1.Oscilation or switching module.
2. Step up module
3. Battery charging module.



1.Oscilation or switching module.

This module is responsible for converting DC into AC. It's made of a switching semiconductor material mostly MOSFET and BJT transistors or an integrated circuit (IC) commonly 555 timer. 
The oscilator module is designed to switch on direct current on and off 60 or 50 times per seconds which is known as the frequency, measured in hertz (Hz). The AC produced by means of switching circuits can be a square wave or sine wave(waveforms).



2. Step up module.

This is use for amplifying or stepping up the AC voltage produced from switching by stepping it up by means of a step up transformer. Commonly, a step-down transformer is usually employed for this. The primary coil is reversed to be the secondary coil and vice-versa.
Most common inverter circuits uses a centre tapped transformer fir stepping up fast switching DC.




3. Battery charging module.

This module is use for charging the battery. The inverter battery could be charged from an AC mains converted into DC by diodes and then stepped down into charging voltage.






Input and output.

A typical power inverter requires a stable DC power source capable of supplying enough current for the intended power demands of the system. The input voltage depends on the design and purpose of the inverter. Examples includes, 

12 V DC, for smaller consumer and commercial inverters that typically run from a rechargeable 12 V lead acid battery. 24, 36 and 48 V DC, which are qcommon standards for home energy systems.  200 to 400 V DC, when power is from photovoltaic solar panels. 300 to 450 V DC, when power is from electric vehicle battery packs in vehicle-to-grid systems.


Output waveform.

inverter may produce a square wave, modified sine wave, pulsed sine wave, pulse width modulated wave (PWM) or sine wave depending on circuit design. Common types of inverters produce square waves or quasi-square waves. One measure of the purity of a sine wave is the total harmonic distortion (THD). A 50% duty pulse square wave is equivalent to a sine wave with 48% THD. Technical standards for commercial power distribution grids require less than 3% THD in the wave shape at the customer's point of connection. IEEE Standard 519 recommends less than 5% THD for systems connecting to a power grid.

There are two basic designs for producing household plug-in voltage from a lower-voltage DC source, the first of which uses a switching boost converter to produce a higher-voltage DC and then converts to AC. The second method converts DC to AC at battery level and uses a line frequency transformer to create the output voltage.

Square wave

This is one of the simplest waveforms an inverter design can produce and is best suited to low-sensitivity applications such as lighting and heating. Square wave output can produce "humming" when connected to audio equipment and is generally unsuitable for sensitive electronics.

Sine wave.

A power inverter device which produces a multiple step sinusoidal AC waveform is referred to as a sine wave inverter. To more clearly distinguish the inverters with outputs of much less distortion than the modified sine wave (three step) inverter designs, the manufacturers often use the phrase pure sine wave inverter. Almost all consumer grade inverters that are sold as a "pure sine wave inverter" do not produce a smooth sine wave output at all,[6] just a less choppy output than the square wave (two step) and modified sine wave (three step) inverters. However, this is not critical for most electronics as they deal with the output quite well.

Where power inverter devices substitute for standard line power, a sine wave output is desirable because many electrical products are engineered to work best with a sine wave AC power source. The standard electric utility provides a sine wave, typically with minor imperfections but sometimes with significant distortion.

Sine wave inverters with more than three steps in the wave output are more complex and have significantly higher cost than a modified sine wave, with only three steps, or square wave (one step) types of the same power handling. Switch power mode (SMPS) devices, such as personal computers or DVD players, function on modified sine wave power. AC motors directly operated on non-sinusoidal power may produce extra heat, may have different speed-torque characteristics, or may produce more audible noise than when running on sinusoidal power.


Modified sine wave.

The modified sine wave output of such an inverter is the sum of two square waves one of which is phase shifted 90 degrees relative to the other. The result is three level waveform with equal intervals of zero volts; peak positive volts; zero volts; peak negative volts and then zero volts. This sequence is repeated. The resultant wave very roughly resembles the shape of a sine wave. Most inexpensive consumer power inverters produce a modified sine wave rather than a pure sine wave.

The waveform in commercially available modified-sine-wave inverters resembles a square wave but with a pause during the polarity reversal.[5] Switching states are developed for positive, negative and zero voltages. If the waveform is chosen to have its peak values for half of the cycle time, the peak voltage to RMSvoltage ratio is the same as for a sine wave. The DC bus voltage may be actively regulated, or the "on" and "off" times can be modified to maintain the same RMS value output up to the DC bus voltage to compensate for DC bus voltage variations. By changing the pulse width, the harmonic spectrum can be changed. The lowest THD for a three-step modified sine wave is 30% when the pulses are at 130 degrees width of each electrical cycle. This is slightly lower than for a square wave.[7]

The ratio of on to off time can be adjusted to vary the RMS voltage while maintaining a constant frequency with a technique called pulse width modulation (PWM). The generated gate pulses are given to each switch in accordance with the developed pattern to obtain the desired output. Harmonic spectrum in the output depends on the width of the pulses and the modulation frequency. It can be shown that the minimum distortion of a three-level waveform is reached when the pulses extend over 130 degrees of the waveform, but the resulting voltage will still have about 30% THD, higher than commercial standards for grid-connected power sources. When operating induction motors, voltage harmonics are usually not of concern; however, harmonic distortion in the current waveform introduces additional heating and can produce pulsating torques.

Numerous items of electric equipment will operate quite well on modified sine wave power inverter devices, especially loads that are resistive in nature such as traditional incandescent light bulbs. Items with a switch mode power supply operate almost entirely without problems, but if the item has a mains transformer, this can overheat depending on how marginally it is rated.

However, the load may operate less efficiently owing to the harmonics associated with a modified sine wave and produce a humming noise during operation. This also affects the efficiency of the system as a whole, since the manufacturer's nominal conversion efficiency does not account for harmonics. Therefore, pure sine wave inverters may provide significantly higher efficiency than modified sine wave inverters.

Most AC motors will run on MSW inverters with an efficiency reduction of about 20% owing to the harmonic content. However, they may be quite noisy. A series LC filter tuned to the fundamental frequency may help.[10]

A common modified sine wave inverter topology found in consumer power inverters is as follows: An onboard microcontroller rapidly switches on and off power MOSFETs at high frequency like ~50 kHz. The MOSFETs directly pull from a low voltage DC source (such as a battery). This signal then goes through step-up transformers (generally many smaller transformers are placed in parallel to reduce the overall size of the inverter) to produce a higher voltage signal. The output of the step-up transformers then gets filtered by capacitors to produce a high voltage DC supply. Finally, this DC supply is pulsed with additional power MOSFETs by the microcontroller to produce the final modified sine wave signal.

More complex inverters use more than two voltages to form a multiple-stepped approximation to a sine wave. These can further reduce voltage and current harmonics and THD compared to an inverter using only alternating positive and negative pulses; but such inverters require additional switching components, increasing cost.

Near sine wave PWM.


Some inverters use PWM to create a waveform that can be low pass filtered to re-create the sine wave. These only require one DC supply, in the manner of the MSN designs, but the switching takes place at a far faster rate, typically many KHz, so that the varying width of the pulses can be smoothed to create the sine wave. If a microprocessor is used to generate the switching timing, the harmonic content and efficiency can be closely controlled.

Output frequency

The AC output frequency of a power inverter device is usually the same as standard power line frequency, 50 or 60 hertz. The exception is in designs for motor driving, where a variable frequency results in a variable speed control.

Also, if the output of the device or circuit is to be further conditioned (for example stepped up) then the frequency may be much higher for good transformer efficiency.

Output voltage

The AC output voltage of a power inverter is often regulated to be the same as the grid line voltage, typically 120 or 240 VAC at the distribution level, even when there are changes in the load that the inverter is driving. This allows the inverter to power numerous devices designed for standard line power.

Some inverters also allow selectable or continuously variable output voltages.

Output power

A power inverter will often have an overall power rating expressed in wattsor kilowatts. This describes the power that will be available to the device the inverter is driving and, indirectly, the power that will be needed from the DC source. Smaller popular consumer and commercial devices designed to mimic line power typically range from 150 to 3000 watts.

Not all inverter applications are solely or primarily concerned with power delivery; in some cases the frequency and or waveform properties are used by the follow-on circuit or device.





Battery.

The inverter doesn't produce power on it own. It gets it power source from a battery. The wattage and time the inverter takes to power a load before going down depends on the capacity of the battery. Batteries are usually connected together in series to increase  the voltage of the batteries while many batteries are connected together in parallel to increase the  capacity. When batteries are connected in series, when batteries are connected together with in series, on a battery got weak it affects the other ones connected together. Therefore, the net voltage gets lower than the required voltage. However, in batteries connected together in parallel. Of one battery gets discharged, it affects the others and they will get slowly discharged. 


Techie Brainiac

The brain behind BuildNode and NodeHut, builder, Tech geek, entrepreneur, innovator, inventor and an embedded and electronics engineer. Got an industrial training at RLG institute of technology. I'm holding a degree in computer science and engineering and have written hundreds of articles and tutored a lot of beginners like you. .

Post a Comment

Previous Post Next Post